Yuni Yulida, Muhammad Ahsar Karim


Mathematical modeling in epidemiology has a very important role in the study of the dynamics of an epidemic. The outbreak of Covid-19, which is currently being spread widely in the world requires in-depth study, starting from the search for sources, prediction of spread patterns, to strategies for handling this virus outbreak. Mathematical modeling can be applied to support various fields of the study. In this paper, we discuss mathematical modeling of the spread of Covid-19 by providing analysis and predictions based on data from the case of Covid-19 in South Kalimantan Province. This study was conducted by estimating parameters of the SIR Model, which is accommodates the death cases in the data, supported by several methods, namely Runge Kutta Method and Nonlinear Least Squares Method. Our analysis to the data and the model yields a Basic Reproduction Number , which means that one individual infected by Covid-19 can produce three new infected individuals. Whereas our prediction shows that infected cases can reach to 37.82% and cases of death can reach to 0.49% of the population who remained in normal activities during the PSBB. The peaks of this case are estimated to occur in the 2nd week of August to the 1st week of October 2020. The fewer people who have normal activities, then the spread of Covid-19 is predicted to pass faster with smaller cases of infection and death. Conversely, the more people who have normal activities, then the spread of Covid-19 in South Kalimantan can take longer and take a higher number of victims.


Mathematical Modeling, Covid-19, South Kalimantan Province, Parameter Estimation, SIR Model, Runge Kutta Method, Nonlinear Least Squares Method & Basic Reproduction Number

Full Text:


References (2020, 29 Maret). Model Prediksi Covid-19 di Indonesia untuk Perencanaan Mitigasi Resiko Terhadap Dampak Epidemiologi, Sosial dan Ekonomi. Diakses pada 20 Mei 2020, dari

Diekmann, O. and Heesterbeek, J.A.P. 2000. Mathematical Epidemiology of Infectious

Diseases, Wiley, New York. (2020, 22 Maret - 20 Mei). Informasi Terbaru Covid-19 di Kalimantan Selatan. Diakses harian pada 22 Maret - 20 Mei 2020, dari

Driessche, P. dan Watmough, J. 2002. Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Bioscience, Vol. 180 (2002), Hal. 29-48. (2020, 16 Maret). Kalau Kita Tidak Serius, Puncak Covid-19 di Indonesia bisa Sekitar 2 Bulan Lagi, di Bulan Ramadan. Diakses pada 20 Mei 2020, dari

Hethcote, H.W. 2000. The mathematics of infectious diseases. SIAM, Rev. 42, No. 599 (2020, 2 Maret). Kasus Covid-19 Pertama, Masyarakat Jangan Panik. Diakses pada 20 Mei 2020, dari

Karim, M.A., Gunawan, A.Y., Apri, M., dan Sidarto, K.A. (2018). Solving a Parameter Estimation Problem of Goodwin Model with Fuzzy Initial Values. Far East Journal of Mathematical Sciences, Vol. 107 (2), Hal. 321-338.

Karim, M.A. dan Gunawan, A.Y. (2020). Parameter Estimations of Fuzzy Forced Duffing Equation: Numerical Performances by the Extended Runge-Kutta Method. Abstract and Applied Analysis, Vol. 2020, Article ID: 6179591, 9 Halaman. Dapat diakses dari (2020, 12 Maret). WHO Umumkan Virus Corona sebagai Pandemi Global. Diakses pada 20 Mei 2020, dari

Madsen, K. dkk. 2004. Methods for Non-Linear Least Squares Problems. Informatics and Mathematical Modelling, 2nd Edition, Denmark. (2020, 3 April). Data BIN: Juli 2020 jadi puncak penyebaran corona di Indonesia. Diakses pada 20 Mei 2020, dari (2020, 22 Maret). Tanggap Darurat, Kalsel Konfirmasi Kasus Pertama Positif Corona. Diakses pada 20 Mei 2020, dari

Nuraini, N., Khairudin, K., dan Apri, M. 2020. Modeling Simulation of COVID-19 in Indonesia based on Early Endemic. Commun. Biomath. Sci., Vol. 3, No. 1, Hal. 1-8. (2020, 27 Maret). COVID-19 Modelling Scenarios Indonesia. Diakses pada 20 Mei 2020, dari (2020, 1 April). Pakar UGM Prediksi Penyebaran Covid-19 di Indonesia Selesai Akhir Mei 2020. Diakses pada 20 Mei 2020, dari (2020, 26 Maret). Pertengahan Mei Jadi Puncak Infeksi Covid-19 di Indonesia: Prediksi Pakar Matematika UNS. Diakses pada 20 Mei 2020, dari

Vincent, G. 2008. Production Planning And Inventory Control. PT Gramedia Pustaka Utama, Jakarta.



  • There are currently no refbacks.


ISSN 1978-3787 (print) | 2615-3505( online)
Published by BINA PATRIA | Email:

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats