PERBANDINGAN METODE ANALISIS DISKRIMINAN, NEURAL NETWORK, DISKRIMINAN KERNEL, REGRESI LOGISTIC, MARS UNTUK DATA BANGKITAN (KOMBINASI VARIANS, OVERLAP DAN KORELASI)
Abstract
Metode untuk pengklasifikasian data diantaranya menggunakan analisis diskriminan, analisis diskriminan kernel, analisis regresi logistik, neural network, dan MARS. Secara keseluruhan masing-masing metode jika diterapkan pada data mempunyai kelebihan maupun kekurangan. Pada pengelompokan data iris virginica dan vercicolor, metode MARS dan NN FeedForward paling baik digunakan. Sedangkan pada pengelompokan data iris setosa dan vercicolor, metode Analisis Diskriminan, NN RBF dan NN FeedForward adalah metode yang paling baik digunakan dalam pengelompokan. Namun berbeda dengan hasil analisis data simulasi yang dibangkitkan melalui Minitab, metode MARS adalah satu-satunya metode yang paling baik digunakan untuk data simulasi karena mempunyai rata-rata ketepatan klasifikasi yang paling besar diantara metode lainnya.
Keywords
Full Text:
PDFReferences
ANSYS , (2004), “ANSYS Modeling and Meshing Guide: ANSYS Release 9,0”, ANSYS, Inc.
Efron, B., (1975), “The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis”. Journal of the American Statisitical Association, 70;892-898.
Fractal , (2003), Comparative Analysis of Classification Techniques, A Fractal White Paper.
Hair, J. F. Jr. ; Rolph E.A; Tatham R. L.,(1998), Multivariate Data Analysis. Fifth Edition. New York. Macmillan College Pub. Co.
Hosmer, D.W., dan Lemeshow, S., (1989), Applied Logistic Regression. New York: John Wiley & Sons.
Johnson, R,. dan Wichern, D., (2007), Applied Multivariate Statistical Analysis, 6nd edition, Prentice-Hall.
Krzanowski, W..J., (1975), “Discrimination and Classification using Both Binary and Continuous Variable”, Journal of the American Statisitical Association, 70;782-352.
Morrison, A. M., 2002, “Hospitality and Travel Marketing”, 3rd edition, USA: Delmar.
Muller,K.R., dan Mika,S., et al, 2003. “An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. On Neural Networks”, vol. 12, No. 2.
Rencher, A.C., (2002), “Methods of Multivariate Analysis”2 rd edition, John Wiley & Sons Ltd., Chichester, England.
Rosenblatt, M., (1956),“Remarks on Some Nonparametric Estimates of a Density Function”. Annals of Mathematical Statistics. 27, 832 -837.
Sharma, S., (1996), Applied Multivariate Techniques, John Wiley & Sons, Inc, New York.
Seber,G.A.F, (1984), Multivariate Observation. John Wiley & Sons Ltd., New York.
Wurm, S.A. and Wilson,B. (1978), English Finderlist of Reconstructions in Austronesian Languages (Post-Brandstetter). Canberra, Australia: The Australian National University.
DOI: https://doi.org/10.33758/mbi.v13i11.273
Refbacks
- There are currently no refbacks.
____________________________________________
MEDIA BINA ILMIAH
ISSN 1978-3787 (print) | 2615-3505( online)
Published by BINA PATRIA | Email: laloemipa@gmail.com
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats